三葉羅茨風機轉子轉速_羅茨鼓風機
三葉羅茨風機轉子轉速:三葉羅茨風機的工作原理
原標題:三葉羅茨風機的工作原理
羅茨風機的結構形式分為臥式和立式兩種。臥式羅茨風機,它由兩個三葉形轉子、機殼、兩根平行軸組成。機殼可分為帶有水冷、氣冷和不設冷卻裝置三類。傳動機構是在兩軸的同端裝有式樣和大小完全相同的、且互相嚙合的兩個齒輪,使主動軸直接與電動機相連,并通過齒輪帶動使從動軸作相反方向的轉動。每個轉子旋轉一周,能排擠出兩倍陰影體積的空氣,因而主動軸每旋轉一周就排擠出4倍陰影體積的空氣。羅茨風機進、出口合理的布置應為:上端進風下端排風(對臥式而言),這樣可以利用高壓氣體抵銷一部分轉子與軸的重力,降低軸承壓力,減少磨損。
羅茨鼓風機的理論風量為qvt=4Aonl,式中A為轉子在垂直位置時與機殼內壁所包圍的面積,計算中近似取它等于轉子運動所描繪的面積πD2/4的1/3,A0=l/3xπD2/4=πD2/12。因而,得出理論風量為qvt=4x(πD2nl)/12=1/3πD2nl。
由于轉子與轉于間、轉子與機殼間有縫隙存在,空氣將會漏回至吸風側,因而實際輸氣量小于理論風量,即qv=ηvqvt=πD3nlηv
D——腰形轉子直徑。即轉子兩頂點間距離m;
L--腰形轉子的長度m;
n——轉子轉數rpm;
ηv——容積效率,一般ηv=0.75-0.85。
從理論分析可知,只要電動機能帶動,鼓風機就可在任何壓強下工作。但是,如出風口與進風口壓強相差過大,就會有大量空氣經間隙漏回至進口,導致鼓風機效率降低;同時,轉速過高,也可能引起機器振動而縮短壽命,故出風口壓強不宜過高。國產羅茨鼓風機的靜壓在19620~Pa之間,風量在0.25-250m3/min(在標準狀態下),一般轉速有580、730、960及1450rpm。
取鼓風機進、出口斷面,列出包含有鼓風機機械能的方程,就可得出能量出L:L=∫21
式中,與氣體熱力學過程有關。由于在羅茨鼓風機內氣體為絕熱壓縮,其能量頭L。為鼓風機壓縮lJ氣體所謂耗茁式中:——吸氣空間的絕對壓力,h;
c——氣體的等熵指數。
在全壓中,動壓所占的比重較小,可以忽略表示風機的壓強,則鼓風機的有效功宰戶。為
g\——鼓風機的風量
卸——鼓風機的靜壓
1.優點
(1)正常情況下,壓力的變化對風量影響很小,風機的轉速成正比,因此,羅茨風機基本屬于定容;
(2)吸氣和排氣時無脈動,不需要緩沖氣罐
(3)占地面積小,便于布置和安裝;
(4)轉子與轉手之間、轉子與殼體之間保留有0.2-0.5mm的間隙,不存在摩擦現象,允許氣流含有一定粉塵;
(5)與水力噴射泵及水環式真空泵相比,不存在“排氣帶水”問題;
(6)運行可靠,維護方便,耐用。
三葉羅茨風機的工作原理:
羅茨風機選型對照表:
以上內容由錦工鼓風機(上海)有限公司(發布,轉載請注明出處。
:
三葉羅茨風機轉子轉速:三葉羅茨風機的結構形式、風量及工作原理,錦工資訊中心,羅茨風機
羅茨風機的結構形式分為臥式和立式兩種。臥式羅茨風機,它由兩個三葉形轉子、機殼、兩根平行軸組成。機殼可分為帶有水冷、氣冷和不設冷卻裝置三類。傳動機構是在兩軸的同端裝有式樣和大小完全相同的、且互相嚙合的兩個齒輪,使主動軸直接與電動機相連,并通過齒輪帶動使從動軸作相反方向的轉動。每個轉子旋轉一周,能排擠出兩倍陰影體積的空氣,因而主動軸每旋轉一周就排擠出4倍陰影體積的空氣。羅茨風機進、出口合理的布置應為:上端進風下端排風(對臥式而言),這樣可以利用高壓氣體抵銷一部分轉子與軸的重力,降低軸承壓力,減少磨損。
羅茨鼓風機的理論風量為qvt=4Aonl,式中A為轉子在垂直位置時與機殼內壁所包圍的面積,計算中近似取它等于轉子運動所描繪的面積πD2/4的1/3,A0=l/3xπD2/4=πD2/12。因而,得出理論風量為qvt=4x(πD2nl)/12=1/3πD2nl。
由于轉子與轉于間、轉子與機殼間有縫隙存在,空氣將會漏回至吸風側,因而實際輸氣量小于理論風量,即qv=ηvqvt=πD3nlηv
D——腰形轉子直徑。即轉子兩頂點間距離m;
L--腰形轉子的長度m;
n——轉子轉數rpm;
ηv——容積效率,一般ηv=0.75-0.85。
從理論分析可知,只要電動機能帶動,鼓風機就可在任何壓強下工作。但是,如出風口與進風口壓強相差過大,就會有大量空氣經間隙漏回至進口,導致鼓風機效率降低;同時,轉速過高,也可能引起機器振動而縮短壽命,故出風口壓強不宜過高。國產羅茨鼓風機的靜壓在19620~Pa之間,風量在0.25-250m3/min(在標準狀態下),一般轉速有580、730、960及1450rpm。
取鼓風機進、出口斷面,列出包含有鼓風機機械能的方程,就可得出能量出L:L=∫21
式中,與氣體熱力學過程有關。由于在羅茨鼓風機內氣體為絕熱壓縮,其能量頭L。為鼓風機壓縮lJ氣體所謂耗茁式中:——吸氣空間的絕對壓力,h;
c——氣體的等熵指數。
在全壓中,動壓所占的比重較小,可以忽略表示風機的壓強,則鼓風機的有效功宰戶。為
g\——鼓風機的風量
卸——鼓風機的靜壓
1.優點
(1)正常情況下,壓力的變化對風量影響很小,風機的轉速成正比,因此,羅茨風機基本屬于定容;
(2)吸氣和排氣時無脈動,不需要緩沖氣罐
(3)占地面積小,便于布置和安裝;
(4)轉子與轉手之間、轉子與殼體之間保留有0.2-0.5mm的間隙,不存在摩擦現象,允許氣流含有一定粉塵;
(5)與水力噴射泵及水環式真空泵相比,不存在“排氣帶水”問題;
(6)運行可靠,維護方便,耐用。
三葉羅茨風機的工作原理:
羅茨風機選型對照表:
以上內容由錦工鼓風機(上海)有限公司(發布,轉載請注明出處。
三葉羅茨風機轉子轉速:三葉羅茨風機的節電率與轉速的關系
轉子應進行動靜平衡校驗。錦工機械
軸與轉子垂直度公差應不大于0.05
mm。羅茨泵的工作原理與羅茨鼓風機相似。由于轉子的不斷旋轉,被抽氣體從進氣口吸入到轉子與泵殼之間的空間v0內,再經排氣口排出。
由于吸氣后v0空間是全封閉狀態,所以,在泵腔內氣體沒有壓縮和膨脹。三葉羅茨風機但當轉子頂部轉過排氣口邊緣,v0空間與排氣側相通時,由于排氣側氣體壓強較高,則有一部分氣體返沖到空間v0中去,使氣體壓強突然增高。
當轉子繼續轉動時,氣體排出泵外。轉子上每一凹入的曲面部分與氣缸內壁組成工作容積,在轉子回轉過程中從吸氣口帶走氣體,當移到排氣口附近與排氣口相連通的瞬時,因有較高壓力的氣體回流,這時工作容積中的壓力突然升高,然后將氣體輸送到排氣通道。兩轉子依次交替工作。兩轉子互不接觸,它們之間靠嚴密控制的間隙實現密封,故排出的氣體不受潤滑油污染。
三葉羅茨風機結構:這種鼓風機結構簡單,制造方便,適用于低壓力場合的氣體輸送和加壓,也可用作真空泵。由于周期性的吸、排氣和瞬時等容壓縮造成氣流速度和壓力的脈動,因而會產生較大的氣體動力噪聲。
既可正壓輸送,亦可負壓抽吸。羅茨風機油封選用進口氟橡膠材料,耐高溫,耐磨,使用壽命長。機種齊全,可滿足不同用戶不同用途的需要。
三葉羅茨風機個恒轉矩負載,其節電率與轉速降成正比即N%=△N%,雖然不同于一般風機、水泵節電率更高,但因它的功率較大,而且只要爐墻不壞,是連續24小時工作的,并開動時間亦很長。
羅茨風機也可用來輸送煤氣、氫氣、乙炔、二氧化碳等易燃、易爆及腐蝕性氣體。由于采用了三葉轉子結構形式及合理的殼體內進出風口處的結構,所以風機振動小,噪聲低。
分享地址: (來自:羅茨風機,羅茨鼓風機,沼氣鼓風機,密集型羅茨風機,
三葉羅茨風機轉子轉速:三葉羅茨風機的節電率與轉速的關系_1
W錦工-50MJ三葉密集羅茨風機
產品介紹 邁巴特羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝,確保
W錦工-65MJ三葉密集羅茨風機
產品介紹 邁巴特羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝,確保
W錦工-80MJ三葉密集羅茨風機
產品介紹 邁巴特羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝,確保
W錦工-100MJ三葉密集羅茨風機
產品介紹 邁巴特密集型羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝
W錦工-125MJ三葉密集羅茨風機
產品介紹 邁巴特密集型羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工
W錦工-150MJ三葉密集羅茨風機
產品介紹 邁巴特密集型羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工
W錦工-175MJ三葉密集羅茨風機
產品介紹 邁巴特羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝,確保
W錦工-200MJ三葉密集羅茨風機
產品介紹 邁巴特羅茨鼓風機是本公司綜合了國內外各種型號羅茨鼓風機先進的技術特點的基礎上、自主開發的一種新產品。產品的研制開發運用先進的CAD鋪住設計和先進的加工工藝,確保
回轉式鼓風機和羅茨風機 羅茨鼓風機升壓 新鄉羅茨鼓風機 傲立羅茨鼓風機
山東錦工有限公司
地址:山東省章丘市經濟開發區
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務電話:15066131928