国产精品视频福利一区二区_扒开腿让你爽的嗷嗷叫小说_乱h亲女小说_国产精品毛片在线完整版的

羅茨風(fēng)機_三葉羅茨鼓風(fēng)機廠家-山東錦工有限公司

羅茨鼓風(fēng)機電話咨詢
您當(dāng)前的位置:羅茨風(fēng)機 > 新聞中心 >
羅茨風(fēng)機產(chǎn)品中心
風(fēng)機結(jié)構(gòu)分類
風(fēng)機用途分類
新聞中心

空氣摩擦加熱風(fēng)機原理_羅茨鼓風(fēng)機

時間:21-04-25  來源:錦工羅茨風(fēng)機原創(chuàng)

空氣摩擦加熱風(fēng)機原理:暖風(fēng)機發(fā)熱的原理是什么?

  PTC加熱器按傳導(dǎo)方式分 (1)以熱傳導(dǎo)為主的PTC陶瓷加熱器.其特點是通過PTC發(fā)熱元件表面安裝的電極板(導(dǎo)電兼?zhèn)鳠?絕緣層(隔電兼?zhèn)鳠?導(dǎo)熱蓄熱板(有的還附加有導(dǎo)熱膠)等多層傳熱結(jié)構(gòu),把PTC元件發(fā)出的熱量傳到被加熱的物體上. (2)以所形成的熱風(fēng)進行對流式傳熱的各種PTC陶瓷熱風(fēng)器.其特點是輸出功率大,并能自動調(diào)節(jié)吹出風(fēng)溫和輸出熱量. (3)紅外線輻射加熱器.其特點實際利用PTC元件或?qū)岚灞砻嫜杆侔l(fā)出的熱量直接或間接地激發(fā)接觸其表面的遠紅外涂料或遠紅外材料使之輻射出紅外線,便構(gòu)成了PTC陶瓷紅外輻射加熱器. PTC加熱器按結(jié)構(gòu)特點分 (1)普通實用型PTC陶瓷加熱器.這類器具主要有: 電熱蚊藥驅(qū)蚊器、暖手器、干燥器、電熱板、電燙斗、電烙鐵、電熱粘合器、卷發(fā)燙發(fā)器等.其特點是功率不大,但熱效率高很實用. (2)自動恒溫型PTC加熱器.這類器具主要有:小型晶體器件恒溫槽、恒溫培養(yǎng)箱、電子保溫瓶、 保溫箱、保溫杯、保溫盤、保溫柜、保溫桌等。其特點是自動保溫、結(jié)構(gòu)簡單、 恒溫特性好、熱效率高、使用環(huán)境溫度范圍寬. (3)熱風(fēng)PTC加熱器.這類熱風(fēng)PTC加熱器主要有:小型溫風(fēng)取暖器、電吹風(fēng)、暖房機、烘干機、干衣柜、干衣機、工業(yè)烘干設(shè)備等. 其特點是輸出熱風(fēng)功率大、速熱、安全、能自動調(diào)節(jié)風(fēng)溫和功耗。問題2:PTC暖風(fēng)機不會耗氧。問題3: 會使臥室空氣干燥,最好買臺加濕器。

空氣摩擦加熱風(fēng)機原理:汽車空調(diào)暖風(fēng)系統(tǒng)的組成和工作原理

  汽車的暖風(fēng)系統(tǒng)可以將車內(nèi)的空氣或從車外吸入車內(nèi)的空氣加熱,提高車內(nèi)的溫度。汽車的暖風(fēng)系統(tǒng)有許多,按熱源的不同可分為熱水取暖系統(tǒng)、燃氣取暖系統(tǒng)、取暖系統(tǒng)等,目前小車上主要采用熱水取暖系統(tǒng),大型車輛上主要采用燃氣取暖系統(tǒng)。

  汽車空調(diào)暖風(fēng)系統(tǒng)的組成

  1) 熱水取暖系統(tǒng)的工作原理

  熱水取暖系統(tǒng)的熱源通常采用發(fā)動機的冷卻水,使冷卻水流過一個加熱器芯,再使用鼓風(fēng)機將冷空氣吹過加熱器芯加熱空氣,使車內(nèi)的溫度升高,見圖4-40。

  (汽車維修技術(shù)網(wǎng)

  的組成和

  圖4-40 熱水取暖系統(tǒng)的工作原理

  2) 熱水取暖系統(tǒng)的組成和部件的

  熱水取暖系統(tǒng)主要由加熱器芯、水閥、鼓風(fēng)機、控制面板等組成。

  (1)加熱器芯

  加熱器芯的結(jié)構(gòu)如圖4-41所示,由水管和散熱器片組成,發(fā)動機的冷卻水進入加熱器芯的水管,通過散熱器片散熱后,再返回發(fā)動機的。

  圖4-41 加熱器芯

  (2)水閥

  水閥用來控制進入加熱器芯的水量,進而調(diào)節(jié)暖風(fēng)系統(tǒng)的加熱量,調(diào)節(jié)時,可通過控制面板上的調(diào)節(jié)桿或旋鈕進行控制,其結(jié)構(gòu)見圖4-42。

  圖4-42 水閥

  (3)鼓風(fēng)機

  鼓風(fēng)機由可調(diào)節(jié)速度的和鼠籠式風(fēng)扇組成,其作用是將空氣吹過加熱器芯加熱后送入車內(nèi)。調(diào)節(jié)電動機的速度,可以調(diào)節(jié)向車廂內(nèi)的送風(fēng)量。鼓風(fēng)機的結(jié)構(gòu)見圖4-43。

  圖4-43 鼓風(fēng)機

  3) 熱水取暖系統(tǒng)調(diào)節(jié)溫度的方式

  4) 就暖風(fēng)系統(tǒng)而言,其溫度的調(diào)節(jié)方式有兩種,一種是空氣混合型,另一種是水流調(diào)節(jié)型。

  (1)空氣混合型

  這種類型的暖風(fēng)系統(tǒng)在暖風(fēng)的氣道中安裝空氣混合調(diào)節(jié)風(fēng)門,這個風(fēng)門可以控制通過加熱器芯的空氣和不通過加熱器芯的空氣的比例,實現(xiàn)溫度的調(diào)節(jié),目前絕大多數(shù)汽車均采用這種方式,其示意圖見圖4-44。

  圖4-44 空氣混合型暖風(fēng)系統(tǒng)

  (2)水流調(diào)節(jié)型

  這類暖風(fēng)系統(tǒng)采用前述的水閥調(diào)節(jié)流經(jīng)加熱器芯的熱水量,改變加熱器芯本身的溫度,進而調(diào)節(jié)溫度。其調(diào)節(jié)的示意圖見圖4-45。

  在大、中型客車上,僅靠發(fā)動機冷卻水的余熱取暖是遠遠滿足不了要求的,為此,在大客車中常采用燃氣取暖系統(tǒng)。燃氣取暖系統(tǒng)的示意圖見圖4-47, 燃油和空氣在中混合燃燒,加熱發(fā)動機的,加熱后的水進入加熱器芯向外散熱,降溫后返回發(fā)動機再進行循環(huán)。

  簡單而供熱可靠,不另需,只要發(fā)動機工作,便可產(chǎn)生熱水。其缺點是必須在發(fā)動機冷卻水溫度上升到大循環(huán)時才能供暖,在寒冷季節(jié)供暖量顯得有些不足,甚至導(dǎo)致發(fā)動機過冷,影響發(fā)動機的正常工作;在取暖時,發(fā)動機的運行增加了發(fā)動機的;大型客車僅依靠這種裝置難以滿足供暖要求,而且新型的效率高, 可用作暖的余熱相對比少,所需升溫時間比稍長,。

  缺點:效率低、復(fù)雜、體積較大,如果熱交換器漏氣,則廢氣進入車廂,造成污染。目前很少使用該取曖方式。

空氣摩擦加熱風(fēng)機原理:空氣懸浮風(fēng)機的工作原理

  隨著永磁材料技術(shù)、半導(dǎo)體技術(shù)和控制技術(shù)的發(fā)展,空氣懸浮風(fēng)機成為世界上新型的電機。運轉(zhuǎn)時,轉(zhuǎn)軸以20000-轉(zhuǎn)的高速運轉(zhuǎn),發(fā)動機效率可達百分之九十七。永磁無刷高速電機還配有數(shù)控調(diào)速裝置,使系統(tǒng)控制簡單。

  空氣懸浮風(fēng)機也是一個離心鼓風(fēng)機,電機本質(zhì)上不同于傳統(tǒng)的風(fēng)扇,這取決于齒輪的增長速度。無齒輪傳動大大降低了機械傳動和摩擦帶來的能耗,大大提高了效率。

  空氣懸浮風(fēng)機依靠氣動場來懸浮軸承并保持高速運轉(zhuǎn)。當(dāng)軸承的運行方式與傳統(tǒng)滾子軸承不同時,轉(zhuǎn)軸與軸承之間沒有物理接觸點,因此不需要低能潤滑油損失。這種冷卻方式通過變頻器調(diào)節(jié)電機的轉(zhuǎn)速,風(fēng)量調(diào)節(jié)精度高、效率高、節(jié)能、噪音低、運行可靠、無需長期維護。

  空氣懸浮風(fēng)機高速、無振動、低噪音、體積小、結(jié)構(gòu)簡單、節(jié)能、電磁輻射小,是目前節(jié)能的綠色環(huán)保電機。在一定程度上,懸浮風(fēng)機主要采用無油空氣強化冷卻和水冷技術(shù)。散熱片采用導(dǎo)熱性強的鋁合金(AL)制成,無附加能的損耗,結(jié)構(gòu)簡單。

  這種設(shè)計可以確保滾筒風(fēng)機在炎熱的夏天仍然保持其可靠的工作性能。懸浮風(fēng)機內(nèi)部出風(fēng)口的旁通管裝有排氣閥和消音器。制造時,其外殼主要由碳鋼制成,內(nèi)部裝有吸音材料。風(fēng)機采用氣動排氣閥,在停電或異常情況下,能保證風(fēng)機的穩(wěn)妥關(guān)閉而不受任何影響,美觀大方。

  空氣懸浮風(fēng)機通過彈性噴嘴與轉(zhuǎn)鼓風(fēng)機直接相連,以減少入口管道的壓力損失和噪音。過濾器和消音器是鋼制外殼,內(nèi)部裝有隔音材料。浮風(fēng)機的方形或矩形可更換濾芯安裝在進氣口處,由吸聲材料制成的片狀結(jié)構(gòu)的整體式進氣消聲器安裝在鼓風(fēng)機體內(nèi)的進氣口和過濾器之間,以降低進氣噪音。

  另外,空氣懸浮風(fēng)機由于采用高科技空氣懸浮軸承技術(shù),完全避免了機械摩擦和振動。經(jīng)過嚴(yán)格測量,證明機器運轉(zhuǎn)時,離機器1m處的噪聲級為80dB。是非常好用的設(shè)備。

空氣摩擦加熱風(fēng)機原理:空氣流動基本原理

  《空氣流動基本原理》由會員分享,可在線閱讀,更多相關(guān)《空氣流動基本原理(124頁珍藏版)》請在人人文庫網(wǎng)上搜索。

  1、第二章 空氣流動基本原理,主要研究空氣流動過程中宏觀力學(xué)參數(shù)的變化規(guī)律以及能量的轉(zhuǎn)換關(guān)系。 內(nèi)容: 風(fēng)流壓力、風(fēng)流流動方程、通風(fēng)阻力、通風(fēng)網(wǎng)絡(luò)中風(fēng)流的基本定律、簡單通風(fēng)網(wǎng)絡(luò)特性、自然通風(fēng)原理、風(fēng)道壓力分布、局部通風(fēng)進出口風(fēng)流運動規(guī)律、置換通風(fēng)原理等內(nèi)容。,本章學(xué)習(xí)目標(biāo),1.掌握風(fēng)道流動的空氣靜壓、位壓、動壓、全壓的概念及其相應(yīng)關(guān)系 2.掌握空氣流動的連續(xù)性方程和能量方程 3.掌握紊流狀態(tài)下的摩擦阻力、局部阻力的計算 4.了解風(fēng)流流態(tài)與風(fēng)道斷面的風(fēng)速分布 5.掌握通風(fēng)網(wǎng)絡(luò)中風(fēng)流的基本定律和簡單通風(fēng)網(wǎng)路特性 6.掌握自然風(fēng)壓的計算方法 7.了解風(fēng)道通風(fēng)壓力分布 8.了解吸入口與吹出口氣流運動規(guī)律 。

  2、9.掌握均勻送風(fēng)與置換通風(fēng)方式的原理,第一節(jié) 風(fēng)流壓力,風(fēng)流壓力:單位體積空氣所具有的能夠?qū)ν庾龉Φ臋C械能。 一、靜壓 1.概念 由分子熱運動產(chǎn)生的分子動能的一部分轉(zhuǎn)化的能夠?qū)ν庾龉Φ臋C械能叫靜壓能,用Ep表示(J/m3)。 當(dāng)空氣分子撞擊到器壁上時就有了力的效應(yīng),這種單位面積上力的效應(yīng)稱為靜壓力,簡稱靜壓,用p表示(N/m2,即Pa) 工業(yè)通風(fēng)中,靜壓即單位面積上受到的垂直作用力。,2.特點 (1)無論靜止的空氣還是流動的空氣都具有靜壓力。 (2)風(fēng)流中任一點的靜壓各向同值,且垂直作用面。 (3)風(fēng)流靜壓的大小(可用儀表測量)反映了單位體積風(fēng)流所具有的能夠?qū)ν庾龉Φ撵o壓能的多少。 3.表示方。

  3、法 (1)絕對靜壓:以真空為測算零點(比較基準(zhǔn))而測得的壓力,用p表示。 (2)相對靜壓:以當(dāng)?shù)禺?dāng)時同標(biāo)高的大氣壓力為測算基準(zhǔn)(零點)而測得的壓力,即表壓力,用h表示。,圖2-1-1 絕對靜壓、相對靜壓和大氣壓之間的關(guān)系,風(fēng)流的絕對靜壓(p)、相對靜壓(h)和與其對應(yīng)的大氣壓(p0)三者之間的關(guān)系(見圖2-1-1): h=p - p0 二、動壓 1.概念 當(dāng)空氣流動時,除位壓和靜壓外,還有空氣定向運動的動能,用Ev表示,J/m3;其單位體積風(fēng)流的動能所轉(zhuǎn)化顯現(xiàn)的壓力叫動壓或稱速壓,用hv表示,單位Pa。,2.計算 設(shè)某點的空氣密度為i(kg/m3),其定向運動的流速即風(fēng)速為i(m/s),則單。

  4、位體積空氣所具有的動能為: ,J/m3 Evi對外所呈現(xiàn)的動壓 ,Pa,3.特點 (1)只有做定向流動的空氣才具有動壓,因此動壓具有方向性。 (2)動壓總大于零。當(dāng)作用面與流動方向有夾角時,其感受到的動壓值將小于動壓真值。故在測量動壓時,應(yīng)使感壓孔垂直于運動方向。 (3)在同一流動斷面上,由于風(fēng)速分布的不均勻性,各點的風(fēng)速不相等,所以其動壓值不等。 (4)某斷面動壓即為該斷面平均風(fēng)速計算值。,三、位壓 1.概念 單位體積風(fēng)流對于某基準(zhǔn)面而具有的位能,稱為位壓,用hz表示。 物體在地球重力場中因地球引力的作用,由于位置的不同而具有的一種能量,叫重力位能,簡稱位能,用Ep0表示。 Ep0=MgZ 。

  5、, J,圖2-1-2 位壓計算圖,2.計算 在圖2-1-2所示的井筒中,求1-1、2-2兩斷面之間的位壓,取2-2點為基準(zhǔn)面(2-2斷面的位能為零)。按下式計算1-1、2-2斷面間位壓: ,J/m3 此式是位壓的數(shù)學(xué)定義式。即兩斷面間的位壓的數(shù)值就等于兩斷面間單位面積上的空氣柱重量的數(shù)值。,3.位壓與靜壓的關(guān)系 當(dāng)空氣靜止時(v=0),如圖2-1-2的系統(tǒng)。由空氣靜力學(xué)可知,各斷面的機械能相等。設(shè)2-2斷面為基準(zhǔn)面, 1-1斷面總機械能 E1=Ep01 + p1 2-2斷面總機械能 E2=Ep02 + p2 由E1=E2得: Ep01 + p1=Ep02 + p2 由于Ep02=0(以2。

  6、-2斷面為基準(zhǔn)面), Ep01=12gZ12,又得 p2=Ep01 + p1=12gZ12 + p1 此即空氣靜止時,位壓與靜壓之間的關(guān)系。,4.位壓的特點 (1)位壓是相對某一基準(zhǔn)面具有的能量,它隨所選基準(zhǔn)面的變化而變化。 (2)位壓是一種潛在的能量,不能像靜壓那樣用儀表進行直接測量。 (3)位壓和靜壓可以相互轉(zhuǎn)化,當(dāng)空氣由標(biāo)高高的斷面流至標(biāo)高低的斷面時,位壓轉(zhuǎn)化為靜壓;反之,當(dāng)空氣由標(biāo)高低的斷面流至標(biāo)高高的斷面時,靜壓轉(zhuǎn)化為位壓。,四、風(fēng)流的全壓和機械能 1.風(fēng)流的全壓 風(fēng)流中某一點的動壓和靜壓之和稱為全壓。 全壓也分為絕對全壓(pt)和相對全壓(ht)。 在風(fēng)流中某點i的絕對全壓。

  7、均可用下式表示 pti=pi + hvi 式中 pti風(fēng)流中i點的絕對全壓,Pa; pi風(fēng)流中i點的絕對靜壓,Pa; hvi風(fēng)流中i點的動壓,Pa。 由上式可知,風(fēng)流中的任一點的絕對全壓恒大于絕對靜壓;相對全壓有正負之分,與通風(fēng)方式有關(guān)。,2.單位體積風(fēng)流的機械能 根據(jù)能量的概念,單位體積風(fēng)流的機械能為單位體積風(fēng)流的靜壓能、動能、位能之和,因此,從數(shù)值上來說,單位體積風(fēng)流的機械能E等于靜壓、動壓和位壓之和,或等于全壓和位壓之和,即 E=pi + hvi + hZ 或 E=pti + hZ,第二節(jié) 風(fēng)流流動基本方程,包括風(fēng)流流動的連續(xù)性方程和能量方程。 本節(jié)主要介紹工業(yè)通風(fēng)中空氣流動。

  8、的壓力和能量變化規(guī)律,導(dǎo)出風(fēng)道風(fēng)流流動的連續(xù)性方程和能量方程。 一、風(fēng)流流動連續(xù)性方程 風(fēng)流在風(fēng)道中的流動可以看作是穩(wěn)定流(流動參數(shù)不隨時間變化的流動)。質(zhì)量守恒定律 當(dāng)空氣從風(fēng)道的1斷面流向2斷面,且做定常流動時(即在流動過程中不漏風(fēng)又無補給),則兩個過流斷面的空氣質(zhì)量流量相等,即 11S1=22S2,任一過流斷面的質(zhì)量流量為Mi(kg/s),則 Mi=const 這就是空氣流動的連續(xù)性方程,適用于可壓縮和不可壓縮流體。 (1)可壓縮流體 當(dāng)S1=S2時,空氣的密度與其流速成反比。 (2)不可壓縮流體(密度為常數(shù)) 其通過任一斷面的體積流量Q(m3/s)相等,即 Q=iSi=c。

  9、onst 風(fēng)道斷面上風(fēng)流的平均流速與過流斷面的面積成反比。,二、風(fēng)流流動能量方程 風(fēng)流在圖2-2-1所示的風(fēng)道中由1斷面流至2斷面,其間無其他動力源。設(shè)1kg空氣克服流動阻力消耗的能量為LR(J/kg),周圍介質(zhì)傳遞給空氣的熱量為q(J/kg);設(shè)1、2斷面的參數(shù)分別為風(fēng)流的絕對靜壓p1、p2(Pa),風(fēng)流的平均流速1、2(m/s);風(fēng)流的內(nèi)能u1、u2(J/kg);風(fēng)流的密度1、2(kg/m3);距基準(zhǔn)面的高度Z1、Z2(m)。,圖2-2-1 傾斜風(fēng)道示意圖,在1斷面下,1kg空氣具有的能量為 到達2斷面時的能量為 根據(jù)能量守恒定律, 式中 qR 風(fēng)流克服通風(fēng)阻力消耗的能量后所轉(zhuǎn)化的熱 能,。

  10、J/kg。,根據(jù)熱力學(xué)第一定律,傳給空氣的熱量(qR+q),一部分用于增加空氣的內(nèi)能,一部分使空氣膨脹對外做功,即 式中,v空氣的比體積,m3/kg。 又因為: 將上兩式代入前面的公式,并整理可得 ,J/kg 此即單位質(zhì)量可壓縮空氣在無其他動力源的風(fēng)道中流動時能量方程的一般形式。,進一步可求得: ,J/kg 此即單位質(zhì)量可壓縮空氣在無其他動力源的風(fēng)道中流動時的能量方程。 同理,如有其他動力源并產(chǎn)生風(fēng)壓Lt,則單位質(zhì)量可壓縮空氣能量方程為: ,J/kg,設(shè)1m3空氣流動過程中的能量損失為hR(Pa),則由體積和質(zhì)量的關(guān)系,其值為1kg空氣流動過程中的能量損失(LR)乘以按流動過程狀態(tài)考慮計算的空。

  11、氣密度m ,即 hR=LRm 將上式代入前面的式子,可得 ,J/m3。單位體積可壓縮空氣的能量方程(無其他動力源) ,J/m3。單位體積可壓縮空氣的能量方程(有其他動力源),式中, p1 - p2 靜壓差; gm(Z1-Z2)或 為1、2斷面的位壓差; 是1、2斷面的速壓差。 上式的物理意義為:1m3空氣在流動過程中的能量損失等于兩斷面間的機械能差。,三、使用單位體積流體能量方程的注意事項 1.由于風(fēng)道斷面上風(fēng)速分布的不均勻性和測量誤差,從嚴(yán)格意義上講,用實際測得的斷面平均風(fēng)速計算出來的斷面總動能和斷面實際總動能是不等的。實際測得的斷面平均風(fēng)速計算出來的斷面總動能應(yīng)乘以動能系數(shù)加以修正。 動能。

  12、系數(shù)Kv是斷面實際總動能與用實際測得的斷面平均風(fēng)速計算出來的總動能的比值,計算式為: 式中,vl為斷面S上微小面積dS的風(fēng)速。 Kv值一般為1.021.1。在實際工業(yè)通風(fēng)應(yīng)用中,可取Kv=1。,2.在工業(yè)通風(fēng)中,一般其動能差較小,式中m可分別用各自斷面上的密度來代替,以計算其動能差。 3.風(fēng)流流動必須是穩(wěn)定流,即斷面上的參數(shù)不隨時間的變化而變化,所研究的始、末斷面要選在緩變流場上。 4.風(fēng)流總是從總能量(機械能)大的地方流向總能量小的地方。在判斷風(fēng)流方向時,應(yīng)用始、末兩斷面上的總能量來進行。 5.在始、末斷面有壓源時,壓源的作用方向與風(fēng)流的方向一致,壓源為正,說明壓源對風(fēng)流做功;反之,則為通風(fēng)。

  13、阻力。 6.單位質(zhì)量或單位體積流量的能量方程只適用于1、2斷面間流量不變的條件,對于流動過程中有流量變化的情況,應(yīng)按總能量的守恒定律列方程。,第三節(jié) 通風(fēng)阻力,通風(fēng)阻力是當(dāng)空氣沿風(fēng)道運動時,由于風(fēng)流的黏滯性和慣性以及風(fēng)道壁面等對風(fēng)流的阻滯、擾動作用而形成的,它是造成風(fēng)流能量損失的原因。 通風(fēng)阻力包括摩擦阻力(沿程阻力)和局部阻力。 一、風(fēng)流流態(tài)與風(fēng)道斷面風(fēng)速分布 1.管道風(fēng)流流態(tài) 層流:在流速較低時,流體質(zhì)點互不混雜,沿著與管軸方向平行的方向做層狀運動,稱為層流(或滯流)。 紊流:在流速較大時,流體質(zhì)點的運動速度在大小和方向上都隨時發(fā)生變化,成為相互混雜的紊亂流動,稱為紊流(或湍流)。,管道內(nèi)。

  14、流動的狀態(tài)的變化,可用無量綱雷諾數(shù)來表征 式中 v氣流速度,m/s; D管道直徑,m; 氣體密度,kg/m3; 氣體動力黏度,PaS。 流體在直圓管內(nèi)流動時,流動狀態(tài)的變化: Re4000(上臨界雷諾數(shù)):紊流。 實際工程計算中,以Re=2300作為管道流動流態(tài)的判定準(zhǔn)數(shù),即: Re2300 紊流。,(a)層流,(b)紊流,圖2-3-1 風(fēng)流流態(tài)與風(fēng)道斷面風(fēng)速分布示意圖,指數(shù)曲線,2.風(fēng)道斷面風(fēng)速分布 層流流態(tài)的風(fēng)流,斷面上的流速分布為拋物線形,中心最大速度v0為平均流速的2倍(圖2-3-1)。 紊流狀態(tài)下,管道內(nèi)流速的分布取決于Re的大小。距管中心r處的流速與管中心(r=0)最大流速v0的比。

  15、值服從于指數(shù)定律(圖2-3-1) 。 式中 r0管道半徑; n取決于Re的指數(shù):當(dāng)Re=50000時,n=1/7; Re=時,n=1/8; Re=時,n=1/10。,設(shè)斷面上任一點風(fēng)速為vi,則風(fēng)道斷面的平均風(fēng)速v為 式中,S為斷面面積, 即為通過斷面S上的風(fēng)量Q,則 Q=vS 斷面上平均風(fēng)速v與最錦工速vmax的比值稱為風(fēng)速分布系數(shù)(速度場系數(shù)),用kv表示 其值與風(fēng)道粗糙度有關(guān)。風(fēng)道壁面愈光滑,該值愈大,即斷面上風(fēng)速分布愈均勻。,二、一般管道通風(fēng)摩擦阻力及計算 圓形風(fēng)道的摩擦阻力hr可按下式計算: ,Pa 式中 摩擦阻力無量綱系數(shù); v風(fēng)道內(nèi)空氣的平均流速,m。

  16、/s; 空氣的密度,kg/m3; L風(fēng)道長度,m; D圓形風(fēng)道直徑,m。 如將風(fēng)道長度為1m摩擦阻力稱為比摩阻,并以hb表示,則 ,Pa/m,當(dāng)量直徑:指以與非圓形風(fēng)道有相等比摩阻值的圓形風(fēng)道直徑。分為流速當(dāng)量直徑和流量當(dāng)量直徑兩種,工程中一般用流速當(dāng)量直徑De計算。 流速當(dāng)量直徑:假想一圓形風(fēng)道中的空氣流速與矩形風(fēng)道的空氣流速相等,且單位長度摩擦阻力(比摩阻)也相等,計算出的圓形風(fēng)道直徑。可得流速當(dāng)量直徑De與斷面積S、斷面周長U的關(guān)系為: 對于不同形狀的通風(fēng)斷面,其周長U與斷面面積S的關(guān)系: 式中,C斷面形狀系數(shù)(梯形C=4.16,三心拱C=3.85,半圓拱C=3.90)。,摩擦阻力無量綱。

  17、系數(shù)與風(fēng)道內(nèi)空氣的流動狀態(tài)和管壁的粗糙度有關(guān)。 管壁的粗糙度分為絕對粗糙度K和相對粗糙度K/D。 1.當(dāng)流動處于層流區(qū)、層流紊流過渡區(qū)、紊流光滑區(qū),即 時,主要與Re有關(guān),與K/D無明顯關(guān)系; 2.當(dāng)流動處于紊流光滑區(qū)向紊流粗糙區(qū)過渡時,即Re介于兩者之間時,主要與Re、K/D均有關(guān)系; 3.當(dāng)流動處于阻力平方區(qū)(紊流粗糙區(qū))時,即 時,只與K/D有關(guān)。,對于流動為紊流光滑區(qū)向阻力平方區(qū)過渡時的摩擦阻力無量綱系數(shù),中國于1976年編制的全國通用通風(fēng)管道計算表采用的公式為: 式中 K風(fēng)道內(nèi)壁的當(dāng)量絕對粗糙度,mm; D風(fēng)道直徑,mm。,在實際通風(fēng)系統(tǒng)中,風(fēng)道直徑很小、表面粗糙的磚、混凝土風(fēng)道內(nèi)和。

  18、隧道及地下風(fēng)道的流動狀態(tài)屬于阻力平方區(qū);除此以外,一般的通風(fēng)管道的空氣流動狀態(tài)大多屬于紊流光滑區(qū)到紊流粗糙區(qū)之間的過渡區(qū)。 在設(shè)計通風(fēng)管道時,為避免繁瑣的計算,可根據(jù)前面的公式制成各種表格或線算圖。全國通用通風(fēng)管道計算表即是一種表格形式。圖2-3-2則是根據(jù)上述公式得到的線算圖,適用于K=0.15mm薄鋼板風(fēng)道。,工程計算中還常用一些簡化公式,如 運用線算圖或計算表,只要已知流量、管徑、流速、阻力四個參數(shù)中的任意兩個,即可求得其余兩個參數(shù)。 必須指出:各種線算圖或計算表格,都是在一些特定的條件下作出的,使用時必須注意。,當(dāng)實際條件與圖表條件相差較大時,應(yīng)加以修正。修正的內(nèi)容主要有以下三類: (。

  19、1)粗糙度的修正 當(dāng)風(fēng)道內(nèi)壁的粗糙度K0.15mm時,可先由圖2-3-2查出hb0,再近似按下式修正: ,Pa/m 式中 hb實際比摩阻,Pa/m; hb0圖上查出的比摩阻,Pa/m; Kr風(fēng)道內(nèi)壁粗糙度修正系數(shù); K風(fēng)道內(nèi)壁粗糙度,mm; v風(fēng)道內(nèi)空氣流速,m/s。,(2)空氣溫度和大氣壓力的修正 按下式修正: ,Pa/m 式中,Kt溫度修正系數(shù),即 t實際的空氣溫度,; KB大氣壓力修正系數(shù),即 B實際的大氣壓力,kPa。,Kt和KB也可以直接由圖2-3-3查得。從圖中可看出,在0100范圍內(nèi),可近似把溫度和壓力的影響看作是直線關(guān)系。,圖2-3-3 溫度與大氣壓的修正系數(shù),【例1】 已知太。

  20、原市某廠一通風(fēng)系統(tǒng)采用鋼板制圓形風(fēng)道,風(fēng)量L=1000 m3/h,管內(nèi)空氣流速v=10 m/s,空氣溫度t=80,求風(fēng)管的管徑和單位長度的沿程損失。(太原市大氣壓力為91.9 kPa) 解:由線算圖查得:D=200 hb0=6.8 Pa/m, 太原市大氣壓力:B=91.9 kPa 由圖2-3-3查得: Kt=0.86, KB=0.92 所以, hb=KtKBhb0=0.860.926.8=5.38 Pa/m,【例2】 有一鋼板制矩形風(fēng)道,K=0.15 mm,斷面尺寸為 mm,流量為L=2700 m3/h,空氣溫度為t=50,求單位長度摩擦阻力損失。 解: 矩形風(fēng)管內(nèi)空氣流速=m。

  21、/s 流速當(dāng)量直徑==m 由=6 m/s,=330 mm,查圖2-3-2得:hb0=1.2 Pa/m 由圖2-3-3查得:t=50時, Kt=0.92 所以 hb=Kthb0=0.921.2=1.1 Pa/m,(3)密度和黏度的修正 ,Pa/m 式中 實際的空氣密度,kg/m3; v實際的空氣運動黏度,m2/s。 【例3】 有一表面光滑的磚砌風(fēng)道(K=3mm),斷面尺寸為 mm,流量為L=1 m3/S(3600 m3/h),求單位長度摩擦阻力。,三、阻力平方區(qū)通風(fēng)風(fēng)道摩擦阻力及計算 對于紊流粗糙區(qū)(阻力平方區(qū))的摩擦阻力無量綱系數(shù)一般采用以下公式 或,在實際通風(fēng)系統(tǒng)中,紊。

  22、流粗糙區(qū)的風(fēng)道如為非圓形,在前面計算圓形風(fēng)道摩擦阻力hr的式子中,用當(dāng)量直徑De代替D,則得到阻力平方區(qū)風(fēng)道的摩擦阻力hr計算式: 因此,對于幾何尺寸和風(fēng)道壁面已定型的紊流粗糙區(qū)通風(fēng)風(fēng)道,之與K/D有關(guān),可視為定值,在標(biāo)準(zhǔn)狀態(tài)下空氣密度為1.2kg/m3,故令 ,摩擦阻力系數(shù),kg/m3或Ns2/m4。,前人通過大量實驗和實測所得的、在標(biāo)準(zhǔn)狀態(tài)(密度為1.2kg/m3)條件下的各類風(fēng)道的摩擦阻力系數(shù),即標(biāo)準(zhǔn)值0見附錄10。 當(dāng)風(fēng)道中空氣密度不等于1.2kg/m3時,可按下式修正: 將代入摩擦阻力計算公式,可得 若通過風(fēng)道的風(fēng)量為Q(m3/s)時,則 對于已定型的風(fēng)道,L、S、U等為已知,故令 。

  23、,風(fēng)道的摩擦風(fēng)阻,kg/m7或Ns2/m8,在正常條件下當(dāng)某一風(fēng)道中的空氣密度一般變化不大時,可將Rr看作是反映風(fēng)道幾何特征的參數(shù)。 代入摩擦阻力計算公式,則有 ,Pa 此式就是紊流粗糙區(qū)(阻力平方區(qū))下的摩擦阻力定律。即當(dāng)摩擦風(fēng)阻一定時,摩擦阻力與風(fēng)量的平方成正比。,例 某設(shè)計地下風(fēng)道為梯形斷面S=8m2,L=1000m,采用工字鋼棚支護,支架截面高度d0=14cm,縱口徑=5,計劃通過風(fēng)量Q=1200m3/min。預(yù)計風(fēng)道中空氣密度=1.25kg/m3,求該段風(fēng)道的通風(fēng)阻力。 解:根據(jù)所給的d0、Q值,由附錄10查得 0=284.210-4 0.88=0.025 Ns2/m4 則 風(fēng)道實際。

  24、摩擦阻力系數(shù) Ns2/m4 風(fēng)道摩擦風(fēng)阻 Ns2/m8 風(fēng)道摩擦阻力 Pa,四、局部阻力及其計算 由于風(fēng)道斷面、方向變化以及分岔或匯合等原因,使均勻流動在局部地區(qū)受到影響而破壞,從而引起風(fēng)流速度場分布變化和產(chǎn)生渦流等,造成風(fēng)流的能量損失,這種阻力稱為局部阻力。 1.局部阻力的成因,2.局部阻力及其計算 局部阻力hl一般用動壓的倍數(shù)來表示 式中,局部阻力系數(shù),無量綱,通過實驗確定。 若通過風(fēng)道的風(fēng)量為Q(m3/s)時,則上式變?yōu)椋?大量實驗證明,只取決于局部構(gòu)件的形狀。 令 ,局部風(fēng)阻 代入上式,有 此即紊流流動下的局部阻力定律。,五、減少通風(fēng)阻力的措施 h=hr + hl 1.減少通風(fēng)摩擦。

  25、阻力措施 (1)減小相對粗糙度; (2)保證有足夠大的風(fēng)道斷面; (3)選用斷面周長較小的風(fēng)道; (4)減少風(fēng)道長度; (5)避免風(fēng)道內(nèi)風(fēng)量過于集中。,2.減少局部通風(fēng)阻力措施 (1)盡量避免風(fēng)道斷面的突然變化,(2)風(fēng)流交叉或匯合處連接合理,(3)盡量避免風(fēng)流急轉(zhuǎn)彎,(4)降低出口流速,(5)風(fēng)道與風(fēng)機的連接應(yīng)當(dāng)合理 保證氣流在進出風(fēng)機時均勻分布,避免發(fā)生流向和流速的突然變化,以減小阻力(和噪聲)。,第四節(jié) 通風(fēng)網(wǎng)絡(luò)中風(fēng)流的基本定律,通風(fēng)網(wǎng)絡(luò):指若干風(fēng)流按照各自的風(fēng)流方向順序相連而成的網(wǎng)狀線路。 包括:風(fēng)量平衡定律、風(fēng)壓平衡定律和通風(fēng)阻力定律。 一、風(fēng)量平衡定律 節(jié)點:兩條風(fēng)路或兩條以上風(fēng)路。

  26、的交點。 分支:匯合處每條支風(fēng)路。 回路:由兩條或兩條以上首尾相連形成的閉合線路。 根據(jù)質(zhì)量守恒定律,在穩(wěn)態(tài)通風(fēng)條件下,流入與流出某節(jié)點的各分支的質(zhì)量流量的代數(shù)和為零,即 Mi=0,在不考慮風(fēng)流密度變化的情況下,取流入的風(fēng)量為正,流出的風(fēng)量為負,則流入與流出某節(jié)點或回路的各分支的體積流量(風(fēng)量)的代數(shù)和為零,即 Qi=0,(a),(b),圖2-4-1 風(fēng)流匯合及回路示意圖,如圖2-4-1(a)所示,當(dāng)不考慮風(fēng)流密度變化時,圖中節(jié)點4處的風(fēng)量平衡方程為 Q1-4 + Q2-4 + Q3-4 - Q4-5 - Q4-6=0 對于圖2-4-1(b)所示閉合回路的情況,同樣有 Q1-2 + Q3-。

  27、4=Q5-6 + Q7-8 或者 Q1-2 + Q3-4 - Q5-6 - Q7-8=0,二、風(fēng)壓平衡定律 若任何一回路中沒有附加動力,根據(jù)能量平衡定律,則不同方向的風(fēng)流的風(fēng)壓或通風(fēng)阻力必然平衡或相等。 對于圖2-4-1(b),可得 h2-4 + h4-5 + h5-7=h2-7 取順時針方向的風(fēng)壓為正,逆時針方向的風(fēng)壓為負,則 h2-4 + h4-5 + h5-7 - h2-7=0 對于任何一回路,則有 式中,hi為第i段分支的風(fēng)壓或阻力。,風(fēng)壓平衡定律:沒有附加動力回路中,不同方向的風(fēng)流,其風(fēng)壓或阻力代數(shù)和等于零。 若回路中有附加動力,則其風(fēng)壓或阻力代數(shù)和等于附加動力產(chǎn)生風(fēng)。

  28、壓的代數(shù)和。即 式中,HJ為附加動力產(chǎn)生風(fēng)壓的代數(shù)和。,三、通風(fēng)阻力定律 1.阻力平方區(qū)流動的摩擦阻力定律:風(fēng)流流動處于紊流粗糙區(qū)時,如摩擦風(fēng)阻一定,摩擦阻力與風(fēng)量的平方成正比。 hr=RrQ2 2.紊流流動局部阻力定律:紊流流動下,如局部風(fēng)阻一定,局部阻力與風(fēng)量的平方成正比。 hl=RlQ2 3.將上兩式相加,則得出阻力平方區(qū)流動總阻力定律。 令h=hr+hl為某通風(fēng)系統(tǒng)分支的通風(fēng)總阻力;R=Rr+Rl為某通風(fēng)系統(tǒng)的通風(fēng)總風(fēng)阻,則有: h=RQ2 此即紊流粗糙區(qū)流動總阻力定律。,第五節(jié) 簡單通風(fēng)網(wǎng)路特性,一、通風(fēng)網(wǎng)路基本形式 1.串聯(lián)風(fēng)路 由兩條或兩條以上分支彼此首尾相連,中間沒。

  29、有風(fēng)流分匯點的線路。 2.并聯(lián)風(fēng)路 由兩條或兩條以上具有相同始節(jié)點和末節(jié)點的分支所組成的通風(fēng)網(wǎng)路。 3.角聯(lián)風(fēng)路 內(nèi)部存在角聯(lián)分支的通風(fēng)網(wǎng)路。 角聯(lián)分支:位于通風(fēng)網(wǎng)路的任意兩條有向通路之間、且不與兩通路的公共節(jié)點相連的分支。 簡單角聯(lián)風(fēng)路;復(fù)雜角聯(lián)風(fēng)路。,4.復(fù)雜風(fēng)路 以上三種均為簡單風(fēng)路,至少包含以上兩種或以上簡單風(fēng)路的通風(fēng)網(wǎng)路稱為復(fù)雜風(fēng)路。 二、串聯(lián)風(fēng)路特性 1.總風(fēng)量等于各分支的風(fēng)量 即: M1=M2=M3=Mn 當(dāng)各分支的空氣密度相等時,或?qū)⑺酗L(fēng)量換算為同一標(biāo)準(zhǔn)狀態(tài)的風(fēng)量后, Q1=Q2=Q3=Qn 2.如系統(tǒng)中無位能差和附加通風(fēng)動力,則總風(fēng)壓(阻力)等于各分支風(fēng)壓(阻力)之和。 h。

  30、s=h1+h2+hn=,3.阻力平方區(qū)流動的總風(fēng)阻等于各分支風(fēng)阻之和。 即 繪制阻力平方區(qū)流動的串聯(lián)風(fēng)路等效阻力特性曲線,方法如下圖:,“風(fēng)量相等,阻力疊加”,串聯(lián)風(fēng)路等效阻力特性曲線,三、并聯(lián)風(fēng)路特性 1.總風(fēng)量等于各分支的風(fēng)量之和 即 當(dāng)各分支的空氣密度相等時,或?qū)⑺酗L(fēng)量換算為同一標(biāo)準(zhǔn)狀態(tài)的風(fēng)量后, 2.如系統(tǒng)中無位能差和附加通風(fēng)動力,總風(fēng)壓等于各分支風(fēng)壓 Q1=Q2=Q3=Qn 注意:當(dāng)各分支的位能差不相等,或分支中存在風(fēng)機等通風(fēng)動力時,并聯(lián)分支的阻力并不相等。,3.阻力平方區(qū)流動并聯(lián)風(fēng)路總風(fēng)阻與各分支風(fēng)阻的關(guān)系 即 4.并聯(lián)風(fēng)路的風(fēng)量分配 若已知并聯(lián)風(fēng)路的總風(fēng)量,在不考慮其他通風(fēng)動力。

  31、及風(fēng)流密度變化時,可由下式計算出分支i的風(fēng)量 即分支風(fēng)量取決于總風(fēng)阻與該分支風(fēng)阻之比。,并聯(lián)風(fēng)路等效阻力特性曲線 “阻力相等,風(fēng)量疊加”,四、阻力平方區(qū)流動角聯(lián)風(fēng)路特性 在角聯(lián)風(fēng)路中,角聯(lián)分支的風(fēng)向取決于其始末節(jié)點間的壓能差。 通過改變角聯(lián)分支兩側(cè)的邊緣分支的風(fēng)阻,來改變角聯(lián)分支的風(fēng)向。 對于圖2-5-1(C),推導(dǎo)出如下角聯(lián)分支風(fēng)流方向判別式,由該判別式可以看出,簡單角聯(lián)風(fēng)路中角聯(lián)分支的風(fēng)向完全取決于邊緣風(fēng)路的風(fēng)阻比,而與角聯(lián)分支本身的風(fēng)阻無關(guān)。 角聯(lián)分支一方面具有容易調(diào)節(jié)風(fēng)向的優(yōu)點,另一方面又有出現(xiàn)風(fēng)流不穩(wěn)定的可能性。,第六節(jié) 自然通風(fēng)及火災(zāi)煙氣流動原理,自然通風(fēng):由有限空間內(nèi)外空氣的密度。

  32、差、大氣運動、大氣壓力差等自然因素引起有限空間內(nèi)外空氣能量差,促使有限空間的氣體流動并與大氣交換的現(xiàn)象。 自然通風(fēng)動力(自然風(fēng)壓):促使有限空間內(nèi)氣體流動的能量差。 自然通風(fēng)的應(yīng)用: (1)單層工業(yè)廠房 (2)多層或高層工業(yè)建筑中的熱車間 (3)特種(殊)建筑物、構(gòu)筑物及容器 (4)各類建筑物中的防排煙系統(tǒng),一、自然通風(fēng)的產(chǎn)生 例1:煙囪內(nèi)外密度差形成(煙囪效應(yīng)) 例2:工業(yè)廠房密度差形成,例3:礦井密度差形成的自然通風(fēng),例4:大氣運動形成的自然通風(fēng),二、自然風(fēng)壓的計算 1.密度差形成的自然風(fēng)壓計算 根據(jù)自然風(fēng)壓定義,圖2-6-2所示系統(tǒng)的自然風(fēng)壓HN可用下式計算 式中 Z與大氣溫度或密度不等。

  33、的有限空間高度,m; g重力加速度,m/s2; 1、2分別為圖2-6-2中0-1-2和5-4-3空間的dZ段空氣密度,kg/m3。 分別以空氣密度平均值m1、m2代替1、2后,簡化可得:,2.大氣運動(風(fēng)壓)形成的自然風(fēng)壓計算 風(fēng)向一定時,建筑物外表面上某一點的風(fēng)壓大小和室外氣流的動壓成正比,HN可用下式表示 式中 A空氣動力系數(shù);(為正,該點風(fēng)壓為正) vw室外空氣流速,m/s; m室外空氣密度,kg/m3。 穿堂風(fēng) 3.密度差與大氣運動(風(fēng)壓)合成的自然風(fēng)壓計算,三、自然風(fēng)壓的影響因素 1.密度差形成的自然風(fēng)壓的影響因素 可用下式來表示 (1)溫度差 影響氣溫差的主要因素是大氣氣溫和風(fēng)流與。

  34、有限空間內(nèi)的熱交換。 (2)空氣成分和濕度 (3)與大氣溫度或密度不等的有限空間高度 (4)大氣壓力,2.大氣運動(風(fēng)壓)形成自然風(fēng)壓的影響因素 (1)室外空氣風(fēng)速 (2)室外溫度T、大氣壓p和相對濕度 (3)建筑物形狀、風(fēng)向 在實際通風(fēng)設(shè)計中,自然通風(fēng)僅以密度差形成自然風(fēng)壓作用計算。,四、火災(zāi)煙氣流動基本原理 1.火災(zāi)煙氣的成分和危害性 燃燒分為兩個階段:熱分解過程和燃燒過程。 火災(zāi)煙氣:指火災(zāi)時各種物質(zhì)在熱分解和燃燒作用下生成的產(chǎn)物與剩余空氣的混合物,是懸浮的固態(tài)粒子、液態(tài)粒子和氣體的混合物。 煙氣的危險性: (1)毒害性 (2)遮光作用 (3)高溫危害,2.促使地面建筑物煙氣流動的主要因。

  35、素 (1)煙囪效應(yīng) (2)氣體熱膨脹 (3)大氣運動風(fēng)力 (4)通風(fēng)空調(diào)系統(tǒng),第七節(jié) 風(fēng)道通風(fēng)壓力(能量)分布及分析,一、水平風(fēng)道通風(fēng)壓力(能量)分布及分析 通風(fēng)機-水平風(fēng)道通風(fēng)系統(tǒng) 如圖2-7-1所示,以縱坐標(biāo)為壓力(相對壓力或絕對壓力),橫坐標(biāo)為風(fēng)流流程,作出壓力(能量)分布線。,從圖中可以看出: (1)由于風(fēng)道水平,各斷面間無位能差,任意兩斷面間的通風(fēng)阻力等于兩斷面的全壓損失(全壓差)(5-6段除外)。 (2)絕對全壓(相對全壓)沿程逐漸減小;絕對靜壓(相對靜壓)沿程分布隨動壓的大小變化而變化。在全壓一定的條件下,風(fēng)流的靜壓和動壓可以相互轉(zhuǎn)化,故靜壓坡度線是沿程起伏變化的。 (3)風(fēng)機的。

  36、全壓Ht等于風(fēng)機進、出口的全壓差,或等于風(fēng)道的總阻力及出口動壓損失之和。 Ht=pt5 pt6 Ht=h0-12 + hv12 即通風(fēng)機全壓是用以克服風(fēng)道阻力和出口動能損失。,將通風(fēng)機用于克服風(fēng)道阻力的那一部分能量叫通風(fēng)機的靜壓Hs,則有 Hs=h0-12=Ht - hv12 表明Hs一定,出口動壓越小,所需通風(fēng)機的全壓也越小。 (4)風(fēng)機吸入段的全壓和靜壓均為負值,在風(fēng)機入口處負壓最大;風(fēng)機壓出段的全壓均是正值,在風(fēng)機出口處全壓最大。而壓出段的靜壓則不一定。 (5)各并聯(lián)分支的阻力總是相等。,二、包含非水平風(fēng)道通風(fēng)壓力(能量)分布及分析 圖2-7-2為簡化的包含非水平風(fēng)道的地。

  37、下通風(fēng)系統(tǒng)。,1.風(fēng)流壓力(能量)分布線的繪制 設(shè)若干測點,即1、2、3、4點,測出各點的絕對靜壓、風(fēng)速、溫度、濕度、標(biāo)高等參數(shù);然后以最低水平2-3為基準(zhǔn)面,計算出各斷面的總壓能;再選擇坐標(biāo)系和適當(dāng)?shù)谋壤詨耗転榭v坐標(biāo),風(fēng)流流程為橫坐標(biāo),把各斷面的靜壓、動壓和位能描在圖2-7-3的坐標(biāo)系中,即得1、2、3、4斷面的總能量,分別用a、b、c、d點表示,以a1、b1、c1、d1分別表示各斷面的全壓,其中b、c和b1、c1重合; a2、b2、c2、d2點分別表示各斷面的靜壓;最后在壓力(縱坐標(biāo))-風(fēng)流流程(橫坐標(biāo))坐標(biāo)圖上描出各測點,將同名參數(shù)點用折線連接起來,即得1-2-3-4流程上的壓力(能。

  38、量)分布線,如圖2-7-3所示。,2.包含非水平風(fēng)道風(fēng)流壓力(能量)分布分析 (1)全能量沿程逐漸下降,通風(fēng)阻力等于斷面上全能量的下降值;全能量坡度差的坡度反映了流動路線上的通風(fēng)阻力分布狀況。 (2)絕對全壓和絕對靜壓坡度線的變化與全能量坡度線的變化不同,其坡度線變化有起伏。 (3)位能差(Ep01Ep04)是自然風(fēng)壓(HN),自然風(fēng)壓和通風(fēng)機全壓共同克服風(fēng)道通風(fēng)阻力和出口動能損失。,第八節(jié) 局部通風(fēng)進出口氣流運動規(guī)律 與均勻送風(fēng)原理,一、吸入口氣流運動規(guī)律,吸氣口附近形成負壓 位于自由空間的點匯吸氣口【圖2-8-1(a)】的吸氣量Q為 式中,v1、v2分別為點1和點2的空氣流速,m/s; r。

  39、1、r2分別為點1和點2至吸氣口的距離,m。 若在吸氣口四周加上擋板【圖2-8-1(b)】,吸氣氣流受到限制,吸氣量為,由上式可以看出,點匯吸氣口外某一點的空氣流速與該點至吸氣口距離的平方成反比,且隨吸氣口吸氣范圍的減小而增大。 圖2-8-2為通過實驗求得四周無法蘭邊和四周有法蘭邊的圓形吸氣口的速度分布圖。,實驗結(jié)果也可用式(2-8-4)和式(2-8-5)表示: 對于四周無法蘭邊的圓形吸氣口, 對于四周有法蘭邊的圓形吸氣口, 式中,v0吸氣口的平均流速,m/s; vx控制點上必需的氣流速度即控制風(fēng)速,m/s; x控制點至吸氣口的距離,m; F吸氣口面積,m2。,(2-8-4),(2-8-5),。

  40、對于寬長比不小于1:3的矩形吸氣口,上兩式也適用。 但上兩式僅適用于x1.5d的場合,當(dāng)x1.5d時,實際的速度衰減要比計算值大。 二、吹出口氣流運動規(guī)律 空氣從吹氣口吹出,在空間形成一股氣流稱為吹出氣流或射流。根據(jù)空間界壁對射流的約束條件,射流又分為自由射流(吹向無限空間)和受限射流(吹向有限空間);按射流內(nèi)部溫度的變化情況,可分為等溫射流和非等溫射流。,1.自由淹沒射流 圖2-8-3所示為自由淹沒射流的流動圖,,具有如下特點: (1)出現(xiàn)并發(fā)展邊界層 (2)全流場或局部流場氣流參數(shù)分布具有自模性 (3)與吸氣口比,軸向速度衰減慢,流場中橫向分速可被忽略。 等溫自由紊流(圓)射流的軸心速度v。

  41、x、橫斷面直徑dx、起始段長度ln的計算公式為,(2-8-6),2.附壁受限射流 當(dāng)射流邊界的擴展受到房間邊壁的影響時,就稱為受限射流(或有限空間射流)。當(dāng)射流斷面面積達到有限空間橫斷面面積的1/5時,射流受限,成為有限空間射流。,若以附壁射流為基礎(chǔ),將無量綱距離定為 或 式中,Sn是垂直于射流的空間斷面面積。 當(dāng) 時,射流的擴散規(guī)律與自由射流相同,并稱 的斷面為第一臨界斷面。 當(dāng) 時,射流擴散受限,射流斷面與流量增加變緩,動量不再守恒,且到 時射流流量最大,射流斷面在稍后處亦達最大,稱 的斷面為第二臨界斷面。,(2-8-7),三、均勻送風(fēng)原理 均勻送風(fēng):指通風(fēng)系統(tǒng)的風(fēng)道把等量的空氣沿風(fēng)道側(cè)壁。

  42、的成排孔口或短管均勻送出。 靜壓差產(chǎn)生的流速為 空氣在風(fēng)道內(nèi)的流速為 式中 pj風(fēng)道內(nèi)空氣的靜壓; pd風(fēng)道內(nèi)空氣的動壓。 設(shè)孔口實際流速為v,孔口出流與風(fēng)道軸線間的夾角為,則它們與孔口面積f0、孔口在氣流垂直方向上的投影面積f、靜壓差產(chǎn)生的流速vj有如下關(guān)系,(2-8-8),(2-8-9),(2-8-10),則,孔口出流流量為 從上式可以看出,要使各側(cè)孔的送風(fēng)量保持相等,必須保證各側(cè)孔 相等,下面為實現(xiàn)的途徑: 1.保持 和 均相等 (1)保持各側(cè)孔流量系數(shù) 相等,出流角盡量大 (2)保持各側(cè)孔 相等,三種實現(xiàn)途徑 a.各側(cè)孔孔口面積f0相等,風(fēng)道斷面變化保持各側(cè)孔靜壓pj相等。,(2-8-。

  43、11),b.風(fēng)道斷面相等,各側(cè)孔孔口面積f0變化使得 相等 c.同時變化風(fēng)道斷面、各側(cè)孔孔口面積f0,使得 相等 2. 變化, 也隨之變化,【例 6.4】如下圖所示的薄鋼板圓錐形側(cè)孔均勻送風(fēng)道。總送風(fēng)量為7200 m3/h,開設(shè)6個等面積的側(cè)孔,孔間距為1.5 m,試確定側(cè)孔面積、各斷面直徑及風(fēng)道總阻力損失。,均勻送風(fēng)管道,解 1計算靜壓速度 和側(cè)孔面積 設(shè)側(cè)孔平均流速=4.5 m/s,孔口流量系數(shù)=0.6,則側(cè)孔靜壓流速=m/s 側(cè)孔面積 m2 取側(cè)孔的尺寸高寬: mm,2計算斷面1處流速和斷面尺寸 由 60,即 1.73的原則確定斷面1處流速=m/s 取=4 m/。

  44、s,斷面1動壓=Pa 斷面1直徑 m,3計算管段12的阻力損失 由風(fēng)量L=6000 m3/h,近似以=800 mm作為平均直徑,查線算圖得=0.14 Pa/m 沿程損失 Pa 空氣流過側(cè)孔直通部分的局部阻力系數(shù) 局部損失 管段12總損失=+=0.21+0.096=0.306 Pa,=0.35,4計算斷面2處流速和斷面尺寸 根據(jù)兩側(cè)孔間的動壓降等于兩側(cè)孔間的阻力可得 Pa 斷面2流速=m/s 斷面2直徑,m,5計算管段23的阻力 由風(fēng)量L=4800 m3/h,=730 mm查附錄6.1得=0.14 Pa/m 沿程損失==0.141.5=0.21 Pa 局部損失=0.3。

  45、5 Pa 總損失=+=0.21+0.13=0.34 Pa 6按上述步驟計算其余各斷面尺寸,計算結(jié)果見表6.6。,7計算風(fēng)道總阻力 因風(fēng)道最末端的全壓為零,因此風(fēng)道總阻力應(yīng)為斷面1處具有的全壓,即,Pa,第九節(jié) 置換通風(fēng)原理與特征,一、置換通風(fēng)的原理 擠壓的原理,二、置換通風(fēng)的特性 以浮力控制為動力。 具有氣流擴散浮力提升、小溫差、低風(fēng)速、送風(fēng)紊流小、溫度/濃度分層、空氣品質(zhì)接近于送風(fēng)、送風(fēng)區(qū)為層流區(qū)的特點。 1.置換通風(fēng)房間內(nèi)的自然對流 置換通風(fēng)的主導(dǎo)氣流是依靠熱源產(chǎn)生的上升氣流及煙羽來驅(qū)動房間內(nèi)的氣流流向。,2.置換通風(fēng)房間的熱力分層 置換通風(fēng)是利用空氣密度差在室內(nèi)形成的由下而上的通風(fēng)。

  46、氣流。 3.置換通風(fēng)房間室內(nèi)空氣溫度、速度與有害物濃度的分布 溫度:底部溫度低、上部溫度高。 風(fēng)速:出口約為0.25m/s,隨著高度增加風(fēng)速越來越低。 有害物濃度:上部高,下部低。在1.1m以下的工作區(qū)其有害物濃度遠低于上部的有害物濃度。,三、置換通風(fēng)的應(yīng)用 1.落地式置換通風(fēng)末端裝置在工業(yè)廠房的應(yīng)用,2.落地式置換通風(fēng)在會議廳的應(yīng)用 3.架空式置換通風(fēng)器在辦公室的應(yīng)用,1.風(fēng)道直徑250mm,長15m,風(fēng)道內(nèi)空氣溫度40。求維持層流運動的最大流速和相應(yīng)的摩擦阻力。(計算) 2.有一鋼板制矩形風(fēng)道,其斷面尺寸為寬300mm、長600mm,長10m,風(fēng)道內(nèi)流過的風(fēng)量L=4000 m3/h。求風(fēng)道。

  47、的總摩擦阻力。 (查圖或表) 3已知某梯形風(fēng)道摩擦阻力系數(shù)=0.0177 Ns2/m4,風(fēng)道長L=200m,凈斷面積S=5m,通過風(fēng)量Q=720 m3/min,求摩擦風(fēng)阻與摩擦阻力。?,思 考 題,4蘭州市某廠有一通風(fēng)系統(tǒng),風(fēng)管用薄鋼板制作。已知風(fēng)量L=1500 m3/h(0.417 m3/s),管內(nèi)空氣流速v=15 m/s,空氣溫度 t=100,求風(fēng)管的管徑和單位長度的沿程損失。 5一矩形薄鋼板風(fēng)管(K=0.15 mm)的斷面尺寸為400mm200mm,管長8m,風(fēng)量為0.88 m3/s,在t=20的工況下運行,試分別用流速當(dāng)量直徑和流量當(dāng)量直徑計算其摩擦阻力。如果采用礦渣混凝土板(K=1.5 mm)制作風(fēng)管,再求該風(fēng)管的摩擦阻力。如果空氣在冬季加熱至50,夏季冷卻至10,該矩形薄鋼板風(fēng)管的摩擦阻力有何變化?,6.一圓形通風(fēng)管道系統(tǒng)的局部,大斷面直徑為600,小斷面直徑為400m,今在斷面變化處測得大小斷面之間的靜壓差為550Pa,大斷面的平均動壓為100Pa,空氣密度為1.2kg/m,求該處的局部阻力系數(shù)。,Thanks。

羅茨鼓風(fēng)機型號分類 羅茨鼓風(fēng)機振動標(biāo)準(zhǔn) jts羅茨鼓風(fēng)機

山東錦工有限公司
地址:山東省章丘市經(jīng)濟開發(fā)區(qū)
電話:0531-83825699
傳真:0531-83211205
24小時銷售服務(wù)電話:15066131928


友情鏈接:羅茨風(fēng)機500攪拌機價格高溫試驗箱山東中心供氧對色燈箱環(huán)保抑塵劑變形金剛森茲風(fēng)機電動平車羅茨鼓風(fēng)機回轉(zhuǎn)式鼓風(fēng)機鎢鋼鉆頭森茲風(fēng)機官網(wǎng)恒溫恒濕試驗箱三葉羅茨風(fēng)機廠家冷熱沖擊試驗箱
版權(quán)所有:Copright ? www.ecoblower.com 山東錦工有限公司 備案號:魯ICP備11005584-6號 2008
地址:山東      章丘
電話:0531-83825699 傳真:0531-83211205 E-mail: sdroo@163.com 網(wǎng)站地圖
錦工羅茨風(fēng)機營業(yè)執(zhí)照